X-rays help astronomers detect spinning black holes

The team used an in-between galaxy to get clear images of quasars consisting of the black holes, with Chandra offering a sharp-enough image to separate the multiple images that resulted from the lensing effect. From there, microlensing (in this case, magnification using individual stars from the galaxy) helped detect the spin in question. The smaller the region emitting X-rays, the more likely it is that a black hole is turning rapidly.

And in some cases, the holes are spinning at an extremely rapid pace. The hole in one quasar, Einstein Cross, was spinning about as fast as theoretically possible — 70 percent the speed of light. The others were spinning at about half that rate.

You probably won’t see many observations like this. Gravitational lensing by its nature requires an ideal alignment, and this particular observation was studying exceptionally distant quasars up to 10.9 billion light-years away. Still, these could provide significant insights into objects that are elusive by their very nature.

bitcoin
Bitcoin (BTC) $ 50,513.00
ethereum
Ethereum (ETH) $ 1,721.96
cardano
Cardano (ADA) $ 1.15
tether
Tether (USDT) $ 0.999720
binance-coin
Binance Coin (BNB) $ 235.13
polkadot
Polkadot (DOT) $ 34.66
xrp
XRP (XRP) $ 0.465785
uniswap
Uniswap (UNI) $ 33.97
litecoin
Litecoin (LTC) $ 189.19
chainlink
Chainlink (LINK) $ 28.50