Intel Next-Gen 10-micron Stacking: Going 3D Beyond Foveros

One of the issues facing next-generation 3D stacking of chips is how to increase the density of the die-to-die interface. More connections means better data throughput, reducing latency and increasing bandwidth between two active areas of silicon that might be manufactured at different process nodes. There’s also a consideration for power and thermal hotspots as well. Intel has been developing its own physical interconnect topologies, most of which we’ve covered in detail before, such as the Embedded Multi-Die Interconnect Bridge (EMIB) that allows 2D expansion and Foveros die-to-die 3D staking that enables vertical expansion. As part of Intel’s Architecture Day 2020, we have a glimpse into Intel’s future with hybrid bonding.

There are several holistic metrics to measure how ‘good’ an interconnect can be; the two that are easiest to understand are density of connections (bump density) and energy (how much energy it takes to transfer a bit).

Intel Next-Gen 10-micron Stacking: Going 3D Beyond Foveros 1
Intel’s Ramune Nagisetty showcasing current packaging technologies at Intel

Intel’s own slides show us that EMIB’s bump density is good for ~400 per square millimeter, with a power of 0.50 picojoules per bit transferred. Foveros takes that a step further, supporting 400-1600 bumps per square millimeter, and an average power of 0.15 picojoules per bit transferred.

Intel Next-Gen 10-micron Stacking: Going 3D Beyond Foveros 2

The next era of ‘Hybrid Bonding’ that Intel is going towards improves both metrics by around a factor of 3-10. The new test chips that Intel has just got back into the lab, involving stacked SRAM, goes towards the 10000 bumps per square millimeter range, with a power under 0.05 picojoules per bit. According to Intel this allows for smaller and simpler circuits, with lower capacitance and better efficiency. Nothing to be said about yields however!

With these new bonding and stacking technologies, the question always becomes one of thermals, and how Intel might stack two performance-related bits of silicon together. In the discussions as part of Architecture Day, Intel stated that these stacked designs require having all layers designed together, rather than independently, in order to manage the electrical and thermal characteristics. As far as Intel sees it, the most power hungry layer is required to go on the top of the stack for the time being, which obviously means that the power connections have to either rise up through the lower layers, or there has to be some form of cantilevered situation where power connections can happen off the edge of the bonding – Intel calls this technology ODI, to support different sized silicon layers.

Intel Next-Gen 10-micron Stacking: Going 3D Beyond Foveros 3

With the future of high performance and high efficiency computing coming to a head with new packaging technologies, finding the right way of going forward is ever critical. For a context on timeline, Intel’s Ramune Nagisetty has stated that Foveros was patented back in 2008, but it took nearly a decade for the process to become physically viable at scale and high-enough yielding for a product to come to market.

Related Reading

About the author

E-Crypto News was developed to assist all cryptocurrency investors in developing profitable cryptocurrency portfolios through the provision of timely and much-needed information. Investments in cryptocurrency require a level of detail, sensitivity, and accuracy that isn’t required in any other market and as such, we’ve developed our databases to help fill in information gaps.

Related Posts

E-Crypto News Executive Interviews

Crypto Scams

The Largest Crypto Scams Of 2022 (So Far)
The Largest Crypto Scams Of 2022 (So Far)
June 14, 2022
Scammers
How Do Scammers Entice Their Prey?
May 10, 2022
Beanstalk Farms Loses $80M In A Massive DeFi Governance Flash-Loan Hack
Beanstalk Farms Loses $80M In A Massive DeFi Governance Flash-Loan Hack
April 23, 2022
Prove
Joon Pak Head of Crypto at Prove talks to Us about Crypto Fraud And More
April 11, 2022
Mintable
Mintable CEO Zach Burks Talks to Us about the Opensea Stolen NFTs and Their Recovery
March 21, 2022

Automated trading with HaasBot Crypto Trading Bots

Blockchain/Cryptocurrency Questions and Answers

Russia
Roundtable Interview-What is the Effect of The Russia-Ukraine War on Cryptocurrency Prices?
March 4, 2022
GamStop
How Does Bitcoin Casino Work + 2021 Beginner’s Guide
November 8, 2021
Cryptocurrency
How to Buy and Sell Cryptocurrency
November 8, 2021
What Are Bitcoin Futures And How Will They Work In 2022?
November 4, 2021
Ethereum
The Unconventional Guide to Ethereum
October 28, 2021


CryptoCurrencyUSDChange 1hChange 24hChange 7d
Bitcoin21,455 0.19 % 0.26 % 12.64 %
Ethereum1,244.0 0.37 % 1.42 % 25.00 %
Tether1.001 0.04 % 0.13 % 0.01 %
USD Coin0.9989 0.16 % 0.08 % 0.04 %
BNB240.15 0.38 % 0.74 % 21.67 %
XRP0.3686 0.02 % 0.46 % 19.16 %
Cardano0.9566 0.22 % 0.68 % 6.96 %
Binance USD1.002 0.24 % 0.04 % 0.09 %
Solana41.43 0.02 % 0.94 % 30.19 %
Dogecoin0.07056 0.61 % 3.27 % 32.83 %

bitcoin
Bitcoin (BTC) $ 21,434.00
ethereum
Ethereum (ETH) $ 1,241.97
tether
Tether (USDT) $ 1.00
usd-coin
USD Coin (USDC) $ 1.00
bnb
BNB (BNB) $ 239.97
xrp
XRP (XRP) $ 0.368756
cardano
Cardano (ADA) $ 0.518421
binance-usd
Binance USD (BUSD) $ 1.00
solana
Solana (SOL) $ 41.35
dogecoin
Dogecoin (DOGE) $ 0.070808